CAN SPECIFIC CONDUCTANCE OF WATER BE AN INDICATOR OF CHEMICAL POLLUTION?

reverse osmosis banner vertical

The United States has been measuring water for decades. Millions of measurements and analyses have been made. Some measurements are taken almost every time water is sampled and investigated, no matter where in the U.S. the water is being studied. Even these simple measurements can sometimes reveal something important about the water and the environment around it.

As with our temperatures, if the pH of your creek begins to change, then you might suspect that something is going on somewhere that is affecting the water, and possibly, the water quality. So, often, the changes in water measurements are more important than the actual measured values.

So what does specific conductance of water have to do with water pollution? Let's take a walk back to school to unravel this. Often in school, students do an experiment where they connect a battery to a light bulb and run two wires from the battery into a beaker of water. When the wires are put into a beaker of distilled water, the light will not light. But, the bulb does light up when the beaker contains salt water (saline). In the saline water, the salt has dissolved, releasing free electrons, and the water will conduct an electrical current.

So what does this mean? Specific conductance is a measure of the ability of water to conduct an electrical current. It is highly dependent on the amount of dissolved solids (such as salt) in the water. Pure water, such as distilled water, will have a very low specific conductance, and sea water will have a high specific conductance. Rainwater often dissolves airborne gasses and airborne dust while it is in the air, and thus often has a higher specific conductance than distilled water. Specific conductance is an important water-quality measurement because it gives a good idea of the amount of dissolved material in the water.

High specific conductance indicates high dissolved-solids concentration; dissolved solids can affect the suitability of water for domestic, industrial, and agricultural uses. At higher levels, drinking water may have an unpleasant taste or odor or may even cause gastrointestinal distress. Additionally, high dissolved-solids concentration can cause deterioration of plumbing fixtures and appliances. Relatively expensive water-treatment processes, such as reverse osmosis, are needed to remove excessive dissolved solids from water.

The effects of high-specific conductance can be seen largely in agriculture. Agriculture is adversely affected by high-specific-conductance water, as crops cannot survive if the water they use is too saline, for instance. Agriculture can also be the cause of increases in the specific conductance of local waters. When water is used for irrigation, part of the water evaporates or is consumed by plants, concentrating the original amount of dissolved solids in less water; thus, the dissolved-solids concentration and the specific conductance in the remaining water is increased. The remaining higher specific-conductance water reenters the river as irrigation-return flow.

High specific-conductance may not be a direct indicator of water pollution, but it can clearly reveal the presence of dissolved material in waters, which may be an indicator of pollution. When combined with a volume of other water tests it can be determined on a preliminary level if a suspect water is polluted.


Reading next